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Tillage management practices have a direct impact on water-holding capacity,
evaporation, carbon sequestration and water quality. This study examines the fea-
sibility of two statistical learning algorithms, namely the least square support
vector machine (LSSVM) and relevance vector machine (RVM), for identifying
two contrasting tillage management practices using remote-sensing data. LSSVM
is firmly based on statistical learning theory, whereas RVM is a probabilistic
model where the training takes place in a Bayesian framework. Input to the
LSSVM and RVM algorithms were reflectance values at different bandwidths and
indices derived from Landsat Thematic Mapper (TM) data. Ground-truth data for
this study were collected from 72 commercial production fields in two counties
located in the Texas High Plains of the south-central USA. Numerous LSSVM-
and RVM-based tillage models were developed and evaluated for tillage classific-
ation accuracy. The percentage correct and kappa statistic were used for the evalu-
ation. The results showed that the best LSSVM and RVM models included the use
of TM band 5 or vegetation indices that involved TM band 5, indicating sensitivity
of near-infrared reflectance of crop residue cover on the surface. This is consistent
with other remote-sensing models reported in the literature. Overall classification
accuracies of the best LSSVM and RVM models were 87.8 and 90.2%, respectively.
The corresponding kappa statistics for those models were 0.75 and 0.80, respec-
tively. Furthermore, comparison of the best LSSVM and RVM models with the
published logistic regression-based tillage models developed with the same data
indicated the superiority of the RVM model over LSSVM and logistic regression
models in determining contrasting tillage practices with Landsat TM data.

1. Introduction

Tillage practices affect evaporation (Schwartz et al. 2010), infiltration (Vervoort et al.
2001), run-off (Takken et al. 2001), carbon sequestration (West and Marland 2002)
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Statistical learning algorithms for identifying tillage 5733

and soil erosion (Takken et al. 2001) from agricultural fields due to wind and water
erosion. Consequently, models that simulate agricultural systems require tillage as
input (Gowda et al. 2003). Therefore, identifying and mapping contrasting tillage
practices over large areas is an imperative task in environmental modelling. However,
collecting tillage data over large areas is a time-consuming and costly task (Sudheer
et al. 2010). In the past, researchers have developed and used different methods for
mapping tillage practices (DeGloria et al. 1986, Motsch et al. 1990). However, the
success of these methods depends on the interpreter’s ability (Sudheer et al. 2010).
Recently, numerous regression-based spectral models have been adopted to deter-
mine tillage practices (Sullivan et al. 2004, Thoma et al. 2004, Daughtry et al. 2005,
Sullivan et al. 2006). Logistic regression-based tillage models are widely used statisti-
cal tools for deriving tillage information from Landsat Thematic Mapper (TM) data
(van Deventer et al. 1997; Vina et al. 2003, Bricklemyer et al. 2006, Gowda et al.
2008). However, logistic regression models have some limitations: (1) they should be
thoroughly evaluated before using them in different geographic regions to adjust the
cut-point probability values (Gowda et al. 2008) and (2) available data are forced to
conform to a predefined model form, which may not be correct for every location
(Sudheer et al. 2010). Sudheer et al. (2010) successfully adopted artificial neural net-
work (ANN) to identify contrasting tillage practices in the Texas High Plains. But the
ANN models have limitations such as lower convergence speed, a black box approach,
less generalized performance and absence of probabilistic output (Park and Rilett
1999, Kecman 2001).

In this study, the applicability of two new-generation statistical learning algo-
rithms, namely the least square support vector machine (LSSVM) and relevance vector
machine (RVM), is verified for identifying two contrasting tillage practices using satel-
lite remote-sensing data. LSSVM is similar to the support vector machine (SVM) and
is based on statistical learning theory. However, LSSVM adopts a least squares linear
system as a loss function instead of using quadratic programming as in SVM (Suykens
et al. 1999). Researchers have successfully used LSSVM for solving different problems
such as estimation of carbon content of agricultural land, site characterization, hyper-
spectral image classification and crop identification (Tang et al. 2006, Mathur and
Foody 2008, Samui and Sitharam 2008). RVM is a statistical learning algorithm devel-
oped by Tipping (2000) that uses Bayesian inference to obtain parsimonious solutions
for classification and regression problems compared to LSSVM. RVM has an identical
functional form to SVM, but provides probabilistic classification and uses ‘automatic
relevance determination’ to choose sparse basis sets (Bishop 1995), which pushes non-
essential weights to 0. Recently, researchers have demonstrated the robustness of RVM
for applications such as land-cover classification, well-log acoustic velocity prediction,
settlement of shallow foundations and seismic attenuation prediction (Foody 2008,
Ghosh and Majumdar 2008, Samui and Sitharam 2008). The main objective of this
study was to evaluate the feasibility of adopting LSSVM and RVM for determining
contrasting tillage practices in the Texas High Plains using Landsat TM data. The
goals of this study were to

• develop and examine the feasibility of LSSVM- and RVM-based models for
collection of tillage information and

• conduct a comparison of the developed LSSVM and RVM models with logistic
regression models reported by Gowda et al. (2008).
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5734 P. Samui et al.

2. Study area

This study was conducted with tillage data collected from 72 commercially operated
production farms (31 in Moore County and 41 in Ochiltree County) in the Texas High
Plains underlain by the Ogallala Aquifer (figure 1), which is being depleted by exten-
sive pumping with minimal recharge. Moore County is located in the north-central
part of the Texas High Plains and has a total land area of 236 826 ha. Two-thirds
of the land in this county is in the nearly level, smooth uplands of the High Plains
(USDA-SCS 1975) with most in row crop and cereal grain production. Corn, sorghum
and wheat are the major crops in the county. In 2004, Moore County ranked 5th
in corn production and accounted for about 5.7% of the total corn produced in the
state (NASS 2005). Ochiltree County has an area of 234 911 ha, with more than
70% of the land in row crop production. Sorghum, wheat and corn are the major
crops in this county. In 2004, Ochiltree County ranked 8th in sorghum production
and accounted for about 2.4% of the total sorghum produced in the state (NASS
2005). Typical planting dates for major crops in the study area vary from the 2nd
week of April to the 3rd week of May. Annual average precipitation is about 481 and
562 mm for Moore and Ochiltree counties, respectively. Crop water needs are supple-
mented with groundwater from the underlying Ogallala Aquifer. Nearly level to gently
sloping fields with silty clay soils of the Sherm series occupy nearly all of the crop
land in both Moore and Ochiltree counties. Conventional tillage practices within the
study area typically consist of offset disc operations in the fall. Common conservation
tillage practices are no ploughing in the fall and sweep or disc ploughing operations
at planting, which leaves at least 30% of the surface covered with crop residue after
planting.
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Figure 1. Location of Moore and Ochiltree counties in the Texas High Plains, USA.
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Statistical learning algorithms for identifying tillage 5735

3. Materials and methods

Development and evaluation of tillage models in this study mainly consisted of
two steps: (1) development of models using the LSSVM and RVM techniques and
(2) evaluation of tillage models with statistical measures of classification accuracy
(i.e. percentage correct or overall classification accuracy and kappa (k) values). Two
level-1 processed, precision-corrected Landsat TM scenes acquired, one on 10 May
2005 for Ochiltree County (Path 30/Row 35) and the other on 17 May 2005 for Moore
County (Path 31/Row 35), were used for developing and evaluating LSSVM- and
RVM-based tillage models. On the day of the Landsat 5 satellite overpass, ground-
truth data were collected from 31 and 41 randomly selected commercial production
fields planted with major crops in Moore and Ochiltree counties, respectively. Ground-
truth data included geographic coordinates obtained using a handheld GPS, infrared
images taken at a 2 m height using the Agricultural Digital Camera (ADC, Dycam
Inc., Chatsworth, CA, USA) and digital pictures of the residue cover taken with a
5 megapixel digital camera.

Crop residue cover was estimated by classifying the infrared images using
Multispec© image processing software developed by the Purdue Research Foundation
(West Lafayette, IN, USA). Tillage classification was based on the percentage of the
soil surface covered with crop residue. Conservation tillage systems were defined in this
study as those that retained at least 30% of the soil surface covered with crop residue
after a crop was planted. Ground-truth pixel locations on each image were identified
using the GPS coordinates for extracting spectral reflectance data for each TM band
image. In Landsat TM data, reflectance values are stored as brightness values (or dig-
ital numbers) in an 8 bit format. The raw brightness values for ground-truth pixels
were extracted and analysed using image processing software. For model development
and evaluation, the mean reflectance data from nine pixels (the ground-truth pixel
and the surrounding eight pixels) were used. The Moore County data set was used
for model development/calibration and the Ochiltree County data set was used for
evaluating the models. For LSSVM and RVM model development, indices were devel-
oped with all possible combinations of two bands from all seven Landsat 5 TM bands.
The TM indices included difference indices, sum indices, product indices, ratio indices
and normalized difference indices. A comparative study has also been conducted
between the developed LSSVM- and RVM-based tillage models used in this study
and the logistic regression models developed by Gowda et al. (2008). Comparison has
been made for both training and testing data sets. The following subsections briefly
describe the LSSVM and RVM methods and the model evaluation criteria used for
evaluation.

3.1 Least square support vector machine

Vapnik (1995) introduced SVMs for solving pattern recognition problems. SVM maps
the low-dimensional data to a higher dimensional space and constructs an optimal
separating hyperplane in the transformed space. This involves solving a quadratic pro-
gramming problem. The dominant feature of SVM that makes it attractive is that
classes that are non-linearly separable in the original feature space can be linearly sep-
arated in the higher dimensional feature space. This makes SVM capable of solving
complex non-linear classification problems. The LSSVM uses the general concepts of
SVM but utilizes the formulation in least squares and, as a result, the solution fol-
lows directly from solving a set of linear equations, instead of quadratic programming
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5736 P. Samui et al.

(Suykens and Vandewalle 1998). Further details on LSSVM can be found in Suykens
et al. (2002). In this study, the collection of tillage information has been considered
as a binary classification problem. A binary classification problem is considered as
having a set of training vectors (D) belonging to two separate classes:

D = {(x1, y1) , . . . , (xl, yl)} , x ∈ Rn, y ∈ {−1, +1} , (1)

where x ∈ Rn and is an n-dimensional data vector with each sample belonging to
either of two classes labelled as y ∈ {−1, +1} and l is the number of training data.
In this study, we use different input parameters for seven different models as shown in
table 1. In the current context of classifying the tillage information, the two classes
labelled as +1 and –1 are conservation tillage and conventional tillage, respectively.

For the case of two classes, one assumes the following:

wTϕ (xk) + b ≥ 1, if yk = +1 (conservation tillage) ,
wTϕ (xk) + b ≤ 1, if yk = −1 (conventional tillage) ,

(2)

which is equivalent to

yk
[
wTφ (xk) + b

] ≥ 1, k = 1, . . . , l, (3)

where φ (·) is a non-linear function that maps the input space into a higher dimen-
sional space, b is the bias, T is the transpose and w is the weight. According to the
structural risk minimization principle, the risk margin is minimized by formulating
the following optimization problem:

minimize
1
2

wTw + γ

2

l∑
k=1

e2
k,

subject to yk
[
wTφ (xk) + b

] = 1 − ek, k = 1, . . . , l,

(4)

where γ is the regularization parameter, determining the trade-off between the fitting
error minimization and smoothness, and ek is an error variable. This optimization
problem (4) is solved by Lagrangian multipliers (Suykens et al. 1999), and its solution
is given by

y (x) = sign

[
l∑

k=1

αkykK (x, xk) + b

]
, (5)

where αk is the Lagrange multiplier, K (x, xk) is the kernel function and sign(•) is the
signum function. Its resultant is +1 (conservation tillage) if the element is greater than
or equal to 0 and –1 (conventional tillage) if it is less than 0.

This study adopts the above methodology for classifying contrasting tillage prac-
tices. In the LSSVM modelling, the data were divided into two subsets: a training
data set for constructing the model and a testing data set for estimating the model
performance. Thus, in this study, a total of 31 data points in Moore County were con-
sidered for training, and the other 41 data points in Ochiltree County were considered
for testing. The training and testing data sets used in this study were also used by
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5738 P. Samui et al.

Gowda et al. (2008) to develop logistic regression-based tillage models. The radial

basis function
(

K (x, xk) = exp
{
− (xk−x)(xk−x)T

2σ 2

})
was adopted as a kernel function

for LSSVM. The design values of the regularization parameter, γ and width (σ ) of
the radial basis function were determined by a trial-and-error approach during the
training process.

3.2 Relevance vector machine

RVM, introduced by Tipping (2000), is a sparse linear model. The key feature of RVM
is that its target function attempts to minimize the number of errors made in the train-
ing data set while simultaneously minimizing the margin between feature spaces. In
this section, a brief introduction on how RVM is used for classification is presented.
Consider a set of example input vectors {xi}N

i=1 given along with a corresponding set
of targets, t = {ti}N

i=1. For the classification problem, xi should belong to either of the
two classes (−1, +1). In the current context of determination of tillage practice, the
two classes are labelled as −1 for conventional tillage and +1 for conservation tillage.
Table 2 shows different input parameters for different RVM models. RVM constructs
a logistic regression model based on a set of sequence features derived from the input
patterns, i.e.

P
(
C1

/
x
) ≈ σ {y (x; w)} , with y (x; w) =

N∑
i=1

wi�i (x) + w0, (6)

where �i is the ith component of the basis vector function:

� (x) = (�1 (x) , �2 (x) , . . . , �N (X))T = [1, K (xi, x1) , K (xi, x2) , . . . , K (xi, xN )]T ,
(7)

W = (W0, . . . , WN )T is a vector of weights, σ {y} = (1 + exp {−y})−1 is the logis-
tic sigmoid link function and K

(
xi, xj

)N
j=1 is the kernel term. Assuming a Bernoulli

distribution for P (t/x), the likelihood can be written as

P (t/w) =
N∏

i=1

σ {y (xi; w)}ti [1 − σ {y (xi; w)}]1−ti . (8)

To form a Bayesian training criterion, we must also impose a prior distribution
over the vector of model parameters or weights, p(w). The RVM adopts a separable
Gaussian prior, with a distinct hyperparameter, αi, for each weight:

p (w/α) =
N∏

i=1

N
(
wi

/
0, α−1

i

)
. (9)

The optimal parameters of the model are then derived by minimizing the penalized
negative log-likelihood:

log {P (t/w) p (w/α)} =
N∑

i=1

[ti log yi + (1 − ti) log (1 − yi)] − 1
2

wTAw, (10)
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where yi = σ {y (xi; w)} and A = diag (α) is a diagonal matrix with non-zero elements
given by the vector of hyperparameters. Next, Laplace’s method is used to obtain a
Gaussian approximation to the posterior density of the weights:

p
(
w

/
t, α

) ≈ N
(
w

/
μ,

∑)
, (11)

where the posterior mean and covariance are, respectively, given by

μ = ∑
�TBt and

∑ = [
�TB� + A

]−1
, (12)

in which B = diag (β1, β2, . . ., βN) is a diagonal matrix with βn = σ {y (xn)}
[1 − σ {y (xn)}].

The hyperparameters are then updated to maximize their marginal likelihood,
according to their efficient update formula:

αnew
i = 1 − αi	ii

μ2
i

, (13)

where μi is the ith posterior mean weight and
∑

ii is the ith diagonal element of the
posterior weight covariance and the quantity provides a measure of the degree to
which the associated parameter wi is determined by the data. This process is repeated
until an appropriate convergence criterion is met. The outcome of this optimization
is that many elements of α go to infinity such that w will have only a few non-zero
weights that will be considered as relevance vectors. Training and testing data sets and
the kernel function used in the LSSVM model were used in the implementation of
the RVM model for performance comparison purposes. Both LSSVM and RVM pro-
grammes were constructed and implemented using MATLAB software (MATLAB
2010).

3.3 Model evaluation

For the purpose of model evaluation, error matrices (Campbell 1987) were developed
for all LSSVM and RVM models to determine the percentage correct (overall classi-
fication accuracy) and kappa coefficient (k) values. Percentage correct was calculated
by dividing the sum of correctly classified fields by the total number of fields examined
as follows:

percentage correct (%) =
(

no. of data predicted correctly
total no. of data

)
× 100. (14)

The percentage correct values were computed separately for the training and testing
data of each of the LSSVM and RVM models. The ‘k’ value is a measure of the differ-
ence between two maps and the agreement that might be contributed solely by chance
matching of the two maps (Congalton and Green 1999). The k value was calculated as

k =
(

O − E
1 − E

)
, (15)
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Statistical learning algorithms for identifying tillage 5741

where O means observed, which is the percentage correct and E is the expected, which
is an estimate of the chance agreement to the observed. A k value of +1.0 indicates
perfect accuracy of the classification.

4. Results and discussion

Tables 1 and 2 present performances of LSSVM and RVM models, respectively, and
table 3 presents comparison of their performances with logistic regression models
reported by Gowda et al. (2008). Based on the training performance results, all the
LSSVM models except III and VI performed better with a percentage correct value
of 91.4%. However, application of these models to the evaluation data set indicated
that only models V, VI and VII maintained their high performance level with only
5 out of 41 data points misclassified. Percentage correct and k values for these mod-
els were 87.8% and 0.75 (table 3), respectively, indicating that LSSVM models may be
suitable for identifying fields with contrasting tillage practices. The developed LSSVM
has also been used to develop an equation (by inputting the design values of σ and b
for different models in equation (5) modified for radial basis function) for prediction
of tillage information. Table 1 shows the different equations for prediction of tillage
information for different models. The values of α for different models are given in
figure 2.

Comparison of RVM models in table 2 indicates that models that use individual
bands (I and II) performed better with a percentage correct value of 94.3% with
the training/calibration data set. However, the percentage correct was reduced to
85.4–87.8% when these models were applied to the evaluation data set. Models V,
VI and VII that use ratio or normalized difference tillage indices performed better
than those that use individual TM bands or difference indices. The percentage cor-
rect values were consistently higher for both training (91.4%) and testing (90.2%) data
sets. The k values for all three models were the same and equal to 0.8, indicating that

Table 3. Comparison between testing performance of LSSVM, RVM and logistic regression
models.

Testing performance

RVM LSSVM Logistic regression

Model Input parameter OA (%) Kappa OA (%) Kappa OA (%) Kappa

I TM5 85.4 0.70 75.6 0.51 73 0.35
II TM5, TM6 87.8 0.75 85.4 0.70 83 0.52
III D15, D16 87.8 0.75 87.8 0.75 85 0.56
IV R35, R36 85.4 0.70 85.4 0.70 80 0.60
V R45, R46 90.2 0.80 87.8 0.75 85 0.70
VI NDTI45,

NDTI46
90.2 0.80 87.8 0.75 85 0.70

VII NDTI15,
NDTI56

90.2 0.80 87.8 0.75 83 0.60

Note: D15 = difference between TM bands 1 and 5; D16 = difference between TM bands
1 and 6; R35, R36, R45 and R46 = ratio of TM bands 3 and 5, 3 and 6, 4 and 5 and 4 and 6,
respectively; NDTI45, NDTI46, NDTI15 and NDTI56 = normalized difference between TM
bands 4 and 5, 4 and 6, 1 and 5 and 5 and 6, respectively; OA is the overall accuracy.
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Statistical learning algorithms for identifying tillage 5743

RVM models were superior to the best LSSVM models reported above. The equations
for the RVM model were also developed for collection of tillage information. Table 2
shows the different equations for the RVM models. Figure 3 depicts the values of w
for these different models.

Comparison of k values in table 3 clearly indicates that RVM models performed the
best (k = 0.8) followed by LSSVM (k = 0.75) and logistic regression (k = 0.7) mod-
els. The RVM model uses only one parameter (σ ) as a tuning parameter, whereas the
LSSVM model uses two parameters (γ and σ ). Furthermore, the RVM models used
only 8–55% of the training data as relevance vectors. These relevance vectors were used
for final prediction. So, there is real advantage gained in terms of sparsity. Sparseness
means that a significant number of the weights are 0 (or effectively 0), which has the
consequence of producing compact, computationally efficient models, which in addi-
tion are simple and therefore produce smooth functions. However, the LSSVM and
logistic regression models do not produce sparse solution.

5. Conclusions

Tillage information on individual production fields at a regional scale is a crucial input
in environmental modelling applications. In this study, two statistical learning algo-
rithms, namely LSSVM and RVM, were evaluated to determine their ability to identify
two contrasting tillage practices in the Texas High Plains and their performances were
compared with logistic regression-based models. The results indicate that models that
use TM band 5 or TM indices that use TM band 5 performed better with all three
statistical models, indicating that near-infrared reflectance is sensitive to crop residue
cover on the surface. Comparison of k values associated with tillage models indicated
that RVM models performed better than LSSVM- and logistic regression-based mod-
els. The developed RVM models also produce a sparse solution, and thus users can
use the developed equations for identifying tillage practices using Landsat TM data at
a regional scale.

Mention of trade names or commercial products in this article is solely for the
purpose of providing specific information and does not imply recommendation or
endorsement by the US Department of Agriculture.
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